skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tyagi, Bhavay"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider the quantum dynamics of a pair of coupled quantum oscillators coupled to a common correlated dissipative environment. The resulting equations of motion for both the operator moments and covariances can be integrated analytically using the Lyapunov equations. We find that for fully correlated and fully anti-correlated environments, the oscillators relax into a phase-synchronized state that persists for long-times when the two oscillators are nearly resonant and (essentially) forever if the two oscillators are in resonance. We identify an exceptional point that indicates the onset of broken symmetry between an unsynchronized and synchronized dynamical phase of the system as correlations within the environment are increased. We also show that the environmental noise correlation leads to quantum entanglement, and all the correlations between the two oscillators are purely quantum mechanical in origin. This work provides a robust mathematical foundation for understanding how long-lived exciton coherences can be linked to vibronic correlation effects. 
    more » « less